博客
关于我
【LeetCode 中等题】49-不同的二叉搜索树
阅读量:294 次
发布时间:2019-03-01

本文共 1084 字,大约阅读时间需要 3 分钟。

题目描述:给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3输出: 5解释:给定 n = 3, 一共有 5 种不同结构的二叉搜索树:   1         3     3      2      1    \       /     /      / \      \     3     2     1      1   3      2    /     /       \                 \   2     1         2                 3

解法1。假设n个节点存在二叉排序树的个数是G(n),令f(i)为以i为根的二叉搜索树的个数,即有:G(n) = f(1) + f(2) + f(3) + f(4) + ... + f(n)。n为根节点,当i为根节点时,其左子树节点个数为[1,2,3,...,i-1],右子树节点个数为[i+1,i+2,...n],所以当i为根节点时,其左子树节点个数为i-1个,右子树节点为n-i,而这左子树的可能排布方式有G(i-1)种,同理右子树的为G(n-i),即f(i) = G(i-1)*G(n-i),

上面两式可得:G(n) = G(0)*G(n-1)+G(1)*(n-2)+...+G(n-1)*G(0)

解题思路:假设n个节点存在二叉排序树的个数是G(n),1为根节点,2为根节点,...,n为根节点,当1为根节点时,其左子树节点个数为0,右子树节点个数为n-1,同理当2为根节点时,其左子树节点个数为1,右子树节点为n-2,所以可得G(n) = G(0)*G(n-1)+G(1)*(n-2)+...+G(n-1)*G(0)

class Solution(object):    def numTrees(self, n):        """        :type n: int        :rtype: int        """        # 用一个一维数组存储0-n的所有排布方式个数,自底向上计算出dp[n]并返回        dp = [0 for _ in range(n+1)]        dp[0] = 1        dp[1] = 1        for i in range(2,n+1):            for j in range(i):                dp[i] += dp[j]*dp[i-j-1]        return dp[n]

 

 

参考链接:

转载地址:http://tufo.baihongyu.com/

你可能感兴趣的文章
MySQL 为什么需要两阶段提交?
查看>>
mysql 为某个字段的值加前缀、去掉前缀
查看>>
mysql 主从 lock_mysql 主从同步权限mysql 行锁的实现
查看>>
mysql 主从互备份_mysql互为主从实战设置详解及自动化备份(Centos7.2)
查看>>
mysql 主键重复则覆盖_数据库主键不能重复
查看>>
mysql 优化器 key_mysql – 选择*和查询优化器
查看>>
MySQL 优化:Explain 执行计划详解
查看>>
Mysql 会导致锁表的语法
查看>>
mysql 使用sql文件恢复数据库
查看>>
mysql 修改默认字符集为utf8
查看>>
Mysql 共享锁
查看>>
MySQL 内核深度优化
查看>>
mysql 内连接、自然连接、外连接的区别
查看>>
mysql 写入慢优化
查看>>
mysql 分组统计SQL语句
查看>>
Mysql 分页语句 Limit原理
查看>>
MySQL 创建新用户及授予权限的完整流程
查看>>
mysql 创建表,不能包含关键字values 以及 表id自增问题
查看>>
mysql 删除日志文件详解
查看>>
mysql 判断表字段是否存在,然后修改
查看>>