博客
关于我
【LeetCode 中等题】49-不同的二叉搜索树
阅读量:294 次
发布时间:2019-03-01

本文共 1084 字,大约阅读时间需要 3 分钟。

题目描述:给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3输出: 5解释:给定 n = 3, 一共有 5 种不同结构的二叉搜索树:   1         3     3      2      1    \       /     /      / \      \     3     2     1      1   3      2    /     /       \                 \   2     1         2                 3

解法1。假设n个节点存在二叉排序树的个数是G(n),令f(i)为以i为根的二叉搜索树的个数,即有:G(n) = f(1) + f(2) + f(3) + f(4) + ... + f(n)。n为根节点,当i为根节点时,其左子树节点个数为[1,2,3,...,i-1],右子树节点个数为[i+1,i+2,...n],所以当i为根节点时,其左子树节点个数为i-1个,右子树节点为n-i,而这左子树的可能排布方式有G(i-1)种,同理右子树的为G(n-i),即f(i) = G(i-1)*G(n-i),

上面两式可得:G(n) = G(0)*G(n-1)+G(1)*(n-2)+...+G(n-1)*G(0)

解题思路:假设n个节点存在二叉排序树的个数是G(n),1为根节点,2为根节点,...,n为根节点,当1为根节点时,其左子树节点个数为0,右子树节点个数为n-1,同理当2为根节点时,其左子树节点个数为1,右子树节点为n-2,所以可得G(n) = G(0)*G(n-1)+G(1)*(n-2)+...+G(n-1)*G(0)

class Solution(object):    def numTrees(self, n):        """        :type n: int        :rtype: int        """        # 用一个一维数组存储0-n的所有排布方式个数,自底向上计算出dp[n]并返回        dp = [0 for _ in range(n+1)]        dp[0] = 1        dp[1] = 1        for i in range(2,n+1):            for j in range(i):                dp[i] += dp[j]*dp[i-j-1]        return dp[n]

 

 

参考链接:

转载地址:http://tufo.baihongyu.com/

你可能感兴趣的文章
nestJS学习
查看>>
Net 应用程序如何在32位操作系统下申请超过2G的内存
查看>>
NetApp凭借领先的混合云数据与服务把握数字化转型机遇
查看>>
Netbeans 8.1启动参数配置
查看>>
NetBeans IDE8.0需要JDK1.7及以上版本
查看>>
netbeans生成的maven工程没有web.xml文件 如何新建
查看>>
netcat的端口转发功能的实现
查看>>
netfilter应用场景
查看>>
netlink2.6.32内核实现源码
查看>>
netmiko 自动判断设备类型python_Python netmiko模块的使用
查看>>
NetMizer-日志管理系统 dologin.php SQL注入漏洞复现(XVE-2024-37672)
查看>>
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
NetScaler的常用配置
查看>>
netsh advfirewall
查看>>
NETSH WINSOCK RESET这条命令的含义和作用?
查看>>
netstat命令用法详解
查看>>
Netstat端口占用情况
查看>>
Netty 4的内存管理:sun.misc.Unsafe
查看>>
Netty channelRegistered\ChannelActive---源码分析
查看>>
Netty WebSocket客户端
查看>>